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In this paper we focus on the (¢, ¢ N ) reaction where polarized electrons are
used to eject polarized nucleons from an unpolarized nucleus'® This reaction has
several advantages as a means for increasing the available information necessary to
constrain theory. The additional measurable quantities are discrete spin degrees
of freedom which can be accessed by providing a polarized electron beam and/or
using a polarimeter for the ejected nucleons. Both of these elements exist and the
advent of the coming generation of high duty factor electron accelerators should
make possible their simultaneous use in coincidence experiments. The discreteness
of the spin degrees of freedom can also be used to minimize systematic experimental
errors by allowing all of the continuous kinematical variables to be fixed while the
spin of the beam is flipped. While this is also true of coincidence experiments using
polarized targets, the measurement of ejectile spin circumvents the difficulties of
producing polarized targets which can be used in a high current electron beam.
From the theoretical standpoint, the (€, eN ) reaction provides direct access to the
spin response of the nuclear system. This is, of course, of considerable importance
since the strong interactions of the nuclear system are explicitly spin dependent as
is the electromagnetic interaction of the electrons with the hadrons of the nucleus.
There is, by inference from recent developments in elastic proton sca.ttering,4 748,49
from the electrodisintegration of the deu‘temn,s ® and from the unexpected results of
longitudinal/transverse separations in inclusive quasielastic electron scatteringl_s
every reason to believe that the addition of these spin observables will considerably

constrain the various elements of models of quasielastic electron scattering.

In & previous paper;“s we presented a formal framework for the description of
the (&, ¢'N ) reaction which provides a direct generalization of the usual description
of the unplolarized reaction and which treats the spin of the ejected nucleon in a
manner consistent with that used in elastic proton scattering. This framework was
constructed to explicitly display the dependence of the differential cross section on
the polarization of the ejected nucleon.’ In that paper, we presented a discussion of
the constraints placed on the eighteen response functions (thirteen of which depend

on ejectile spin) by various symmetries. We also provided limited preliminary
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2. Review of Formalism

By virtue of general symmetry principles, the differential cross section for

the (€, N ) reaction, when the residual nucleon is left in its ground state or some

discrete excited state, can be written as*®

( d’c ) _ m|p'| ( do )
depdQpdQp /4 0 2 (27)° \ 0/ pone

x{VL (Ry + RES) + Vr (Br + R3Sn)

+Vrr [(Rr:r + R7rSa) cos 28 + (Rfm S+ R;Ts,) sin 2[3] (2.1)
+Vir [(RLT + RIpSa) cos B + (RiTS; + R},ng) sin B]

+hVir [(Rurs + RipiSa)sin B + (RLpS + Rip. s;) cos ﬁ]

+ hVpp:. (Rf’.rr Si + R S;)}

where k and € (E’ and ¢) are the momentum and energy of the incident
(scattered) electron, k is the incident electron helicity, 8 is the electron scattering

angle and m is the nucleon mass. Defining ¢’ and w as the momentum and energy

transfer from the electron, and Q? = —¢? = §2% — w?, the Mott cross section is
( do ) _ ( acosf/2 )2 _ (2aek- cosﬁ/Z)2 (2.2)
dnk' Mott 2€k Si].'l.2 6/2 Q2 : ]

The kinematic factors are defined as
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on the final state boundary condition, incoming (—) and outgoing (+) scattered
waves. For the (€, ¢'7') reaction, the (—) condition is appropriate. In the general
case, (2.5) does not imply an immediately useful result. However, in cases where
the boundary conditions can be ignored, (2.5) states that the symmetric part
of W (§%) is independent of 8% and that the antisymmetric part of W (5%)
is proportional to 8. This is because the dependence of W#¥ (éh) on §p is
at most linear. These results really apply only in idealized models where there
is no scattered wave at infinity, such as the PWIA. However, the PWIA is a
useful conceptual limit so that the behavior of the response functions under such
conditions is of interest. In the column of Table 1 headed “TP”, response functions
which survive the conditions (2.5) when the boundary conditions are ignored are

labeled “even” while those which do not are labelled “odd”.

Additional properties of the response functions are of interest from the
experimental viewpoint. Since it is more difficult to measure ejected nucleons
which have momenta lying out of the electron scattering plane (because it is
necessary to move either the electron beam or the hadron spectrometer out of
the plane of the floor of the experimental hall), it is useful to know which of the
response functions can be detected in the electron scattering plane (8 = 0 or
g = =) and which require going out of plane. The column of Table 1 labeled
“Survives In-Plane” indicates which response functions contribute in the electron

scattering plane.

Coincidence experiments are often performed with the ejectile momentum
parallel (a = 0) or antiparallel (& = ) to the momentum transfer. This is the so-
called parallel-antiparallel kinematics, where the parallel/antiparallel distinction is
conventi(;naLlly made according to whether? the recoil momentum Pg is parallel or
antiparallel to § or, alternately, whether'? the “missing” momentum f,, = ~Pgis
parallel or antiparallel to ¢’ (in PWIA, only, pp, is the initial nucleon momentum).
The column of Table 1 labeled “Survives in Parallel Kinematics” indicates which
of the response functions contribute to the cross section under these kinematical

conditions. The general definitions of the response functions depend upon the



system in this limit. The unit vector | is chosen to point along ', # points in
the positive y-direction and { = i x [. This corresponds to the limiting process
of first taking the limit # — 0 and then a — O(r), that is, the natural spin
coordinate system in parallel kinematics is defined by simply allowing # = 0 in
Fig. 1. Thus the spin-dependent response functions R7p, R.‘LT' and R',lrrv determine
the transverse component normal to the electron scattering plane, transverse
component in the electron scattering plane, and the longitudinal component of
the ejectile polarization vector. Note from (2.1) that the detection of the in-plane
components of the polarization vector require a polarized electron beam whereas
the normal component does not. Because the response functions corresponding
to the in-plane polarizations are predicted to be large (see later discussion)
and because those corresponding to the normal polarization are predicted to be
small, but dynamically sensitive, ejectile polarization measurements in the case
of parallel/antiparallel kinematics appear to be a promising means of extracting

dynamical information about the (€, e'f’) reaction process.

Since the polarization of existing electron beams is limited to about 40
percent and such beams have limited current, coincidence experiments which
do not require beam polarization can be performed more rapidly. The column
labeled “Electron Polarization Required” in Table lindicates which of the response

functions contribute only when the beam is polarized.

Finally, terms contributing to the cross section in the electron scattering
plane with a contribution to the cross section which changes sign under the
change in kinematics 8 = 0 — f = = can be most easily separated from the
. total cross section, at least in principle, by making the change in azimuthal angle
and subtracting cross sections. The last column of Table 1, labeled “Reflection
Symmetry”, gives the symmetry of the contribution to the cross section associated
with each of the response functions under the reflection of the ejectile momentum
7' through the yz-plane (irrespective of any associated direction changes of #, I,
and 7). The terms of special interest are those with odd symmetry which contribute

in the electron scattering plane.
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and

Gm(Q?) = A(Q?) + (@) (3.4)

with 7 = Q?/(4m?). Note that (3.3) can be derived by a nonrelativistic expansion
of the free Dirac current matrix elements to order (1/m). As long as the lowest
order is sufficient, there are no ambiguities in (3.2) associated with the use of the
Gordon identity. There is, however, some ambiguity associated with the choice of
form factors in (3.2). From (3.3) it is clear that the form factor Fy(Q?) differs from
. the Sachs form factor Gg(Q?) by a term proportional to 7. Since 7 is manifestly
of order (1/m)?, the difference between the two form factors is of higher order
than is retained in the nonrelativistic expansion. Under circumstances where the
difference between F;(Q?) and Gg(Q?) becomes quantitatively significant, the use
of this lowest-order expansion clearly becomes invalid, and higher-order corrections

must be carefully treated.

The expression for the nuclear response tensor can be simplified by noting

that

f — - 1 - —
> Yatym (5! = §) Uy (5! — @) =5mnt; (177 - 71)
m

3.5
(23+1) (|-4 —-l (5:3)

where ny, (|7]) is the momentum density distribution for a proton (neutron) in
the nlj subshell and Ry, is the single-particle radial wave function. The nuclear

response tensor therefore reduces to
1 - _.
wH (%) = Tr [4— (1+ &:85) 7" (v, q) Jet (¢, q)] nai (7' —@]).  (3.6)

Performing the traces for various combinations of the currents and comparing to

(Ad), the response functions are

Ry =F}(Q")nny; (|7 - 7))
R} =0
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It is straightforward to generalize to a Dirac plane wave approximation. In

this approximation, the nuclear response tensor can be written as

VV“"' & ) — E:"u -' ") 1 + '75#') I"’(q)\p,,,,-m (f, - E) (3 8)

xvnljm (ﬁ’ )r (q (P y 8 )

where

—p A ~} af nd J
t_ [P "SR a (7' - 8p) P

ré(g) = Fu(Q)r* + 2289 sy, (3.10)

and T" = ~°T#!40 denotes the Dirac adjoint. Again, the choice of the cur-
rent operator as the usual form of the free Dirac current is somewhat arbitrary.
The general form of the fully-off-shell current operator can be constructed using
general symmetry arguments and the properties of the Dirac 4-matrices. From
four-momentum conservation there are only two independent four-momenta at the
vertex. Using any two four-momenta along with the v-matrices and their com-
mutation relations, it can be shown that there are twelve independent four-vector
forms which can be constructed in the Dirac space and which transiorm prop-
erly under ]pa.rity.5 ' In constructing these twelve forms, all scalars involving four-
momenta contracted with y-matrices are incorporated, leaving three remaining
momentum-space scalars which can be constructed using only the two indepen-
dent four-momenta. Each of the twelve four-vectors in the Dirac space is therefore
multiplied in general by a form factor which is an arbitrary function of these three
scalars. For example, the form factors can be chosen to be functions of the in-
variant n;asses of the photon and the two nucleons which join at the vertex. The
commutation relations for the v-matrices can be used to construct generalized
Gordon identities which allow for the rearrangement of the various contributions
to the vertex functions. In order to uniquely determine the complete off-shell be-
havior of the vertex function, it is necessary to have a dynamical theory for the

nucleon. It may be possible, however, to place some constraints on the vertex

14



be written as
it (5}:) =

% (:l + ’75#') Iw(?)% ( nly (17 - q) + nn:, (lP D) T (Q)ﬂ

(3.13)
The calculation of the various response functions from (3.13) is straightforward,
although very tedious, and the resulting expressions are exceedingly complicated.
There is, however, a particular case in which the results are both simpler and
interesting from a pedagogical standpoint. If the bound state Dirac equation
is projected onto the positive energy (plane wave basis) space, eliminating all
coupling to the negative energy space, the solution of the Dirac equation can be

written as the spinor wave function

) + m\ /2

where the wave function is normalized such that

[ 0 Totsm (7) Y oty (7) = j Ppl,,, (5) Buym (5) = 1. (3.15)

This simplification eliminates the dynamical aspects of relativity inherent in the
Dirac equation. That is, the effects of coupling to virtual negative energy states
have been eliminated while the relativistic kinematics of the Dirac equation have
been retained. It is in this sense that we refer to equivalent nonrelativistic

* calculations, as we did in Ref. 33.

In this case the momentum distributions are given by

2_1+1

ot (7) =l (7)) = | Rty (7))
fim; (F) = E( B 7)Y (17 l) (3.16)

nl: (lp |) E( )n"'.‘i (IP |)

where Ry; (|7']) is the radial part of ®nijm (7). With these definitions of the
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Ry =0
Rip = {n Q") + Fa(@r)EZ 1117 cos ""‘} @)\ s, (15" - 7))

2m?2 m

Bir = - {R@Z + R} 6u(@) D sinandy (7 - )

Rty =— {.FI(Q’)cosa+F2(Q | B'wcos & — |7] 7" I} c (Qz)iql s (5" - 7))

2m?2
7

=Fp = —E'
7’| — @WE' cos - R (Qz)_ cos a} Crm(QY)ns Nuly (18" - 1)

Rppi = {Fu:o’)

m2

Rbg = {mQ’) +F(Q) Q}GM(Qz)Sin“nﬁlj(lﬁ'_é‘l)

where 7 = (J°/(4m?) = —g2/{d4m?). Since these results do not contain the physics
of coupling to the negative energy Dirac space in the bound state, we refer to this
as the semi-relativistic plane wave impulse approximation (SRPWIA). First, we
note that, given the ambiguity in using GE(Q?) or F1(Q?), equations (3.18) reduce
to the cqmpa-.rable expressions in (3.7) in the limit where the momenta are small
compared to the nucleon mass. Equations (3.18) exhibit a diversity of dependence
on the ingredients from which the response functions are formed that goes a bit
beyond that found in the nonrelativistic limit {3.7). The additional structure in
(3.18) due to relativistic effects arises exclusively from higher order terms in the
(1/m} expansion of the current operator. Further, purely off-shell, terms appear
for other choices of the relativistic current operator, yielding different and much
more complex forms for the response functions. Thus, the relativistic corrections
exhibited in (3.18) must be regarded as representative, only. Of course, model
dependence introduced by ambiguities in the off-shell contributions bears directly

on the degree of precision with which predictions can be reliably made.
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momentum distribution. The effect of such exchange currents can be most clearly
identified where the impulse approximation gives a small result, such as at large
recoil momentum where the impulse approximation is suppressed by the one-
body momentum distribution, whereas momentum sharing allows the effective
current operator to make a larger relative contribution. This feature will also
be characteristic of other many-body corrections to the effective current operator

such as ground state correlations and inelastic rescattering effects.

In addition, the dependence of the effective current operator on the external
momenta § and p' is more complicated than that of the free current operator. The
functional dependence on the asymptotic momenta and spin of the impulse and
many-body contributions can, therefore, be expected to be distinctive. This raises
the possibility that kinematical regions may be identified for the various response
functions which will tend to emphasize one or more dynamical contributions
to the reaction. The additional freedom provided by the measurement of the
recoil polarization can be expected to facilitate such attempts to isolate individual
physical processes. This has been shown to be the case in existing calculations
of electrodisintigration of the deuteron. Thus, although the DWIA results which
follow exhibit a number of physically interesting characteristics, this study by
no means exhausts the physically interesting issues associated with the (& e'p’)
reaction. Considerably more analytical sophistication will be required to fully
circumscribe the dynamics relevant to this reaction., DWIA results represent a

first step in this direction.

Figures 2-4 display the first comprehensive results of DWIA predictions for
the full set of eighteen (&, e's’) response functions. However, before discussing
our resul"ts it is usefu! to make some comments on the likely extraction of the
information contained in the (€, e's’) cross section. It is clearly a formidable
task to undertake the separation of all eighteen response functions. For simple
systems such as the deuteron it may be possible for a compressive program of
measurements, including target and ejected nucleon polarization, to completely

determine the transition current densities up to an overall phase. In this case,
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ejection of & 135 MeV proton from the 1p, /; shell of 160 at a constant momentum

transfer of 2.641 fm~!.

Four different dynamical calculations are presented for each of the eighteen
response functions in Figs. 2-4. The solid lines represent the Dirac DWIA
calculations as described in Ref. 33. These use Dirac optical model scattering wave
functions for the ejected nucleon using the Dirac optical potential of Ref. 49, Dirac-
Hartree independent particle bound state wave functions®® and the free Dirac
current operator as given by (3.10) using the Hohler 8.2 pa.r.'Junet;erizzsn‘.ion55 of the
nucleon form factors. The dotted lines represent the Dirac PWIA calculation with
the nuclear response tensor described by (3.13). The equivalent nonrelativistic
DWIA calculations, as described in Section 3, is represented by the dashed lines.
A calculation, which for convenience we refer to as “on shell”, is represented by the
dot-dashed lines. In this calculation, only the pole part of the propagator which
appears in the Mgller operator for the scattering wave function is kept. This forces
the nucleon-nucleus scattering t matrix, which appears in this Mgller operator, to
be on shell. By comparison with the full Dirac and nonrelativistic calculations,
this calculation can be used as a rough measure of the sensitivity of the DWIA
calculations to the off-shell components of the t matrix which are not so highly

constrained by experimental elastic proton scattering.

A careful examination of the eighteen response functions shown in Figs. 2-4
shows that there is no consistent relationship among the various calculations which
holds for all of the response functions. This is not surprising since seven of the
eighteen response functions cannot even contribute in the PWIA, but do so in the
various distorted wave calculations. This diversity alone suggests that it is indeed
likely that a selective separation of response functions may be useful in assessing
the merits of various models applicable to this reaction. Although there seems to
be no global relationship between the four calculations, some interesting patterns

do appear in Figs. 2-4.

First we note from the figures that a number of the polarization response
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of the two transverse components of the transition current density. Much like
Rypr:, the response function Rpr, which is predicted to be appreciable, also shows
considerable sensitivity to off-shell effects while being totally insensitive to the
difference between Dirac and nonrelativistic dynamics. Unlike Rrr however, Rzr
is very large in the PWIA limit, so that its response to final state effects is very
different from and complementary to that of Rrz..

An important characteristic of these off-shell contributions to the scattering
wave functions is that, since such contributions can not propagate to infinity,
they are nonzero only in the nuclear interaction volume. Therefore, response
functions which are very sensitive to the inclusion of the off-shell contributions
are sensitive to the detailed characteristics of the scattering wave function in the
nuclear interior. This has implications beyond the DWIA since it suggests that
these response functions may also have the potential to be sensitive to many-
body effects such as more sophisticated treatments of the nuclear wave function,
exchange currents, and correlations, which modify the effective current operator

in the nuclear interior.

For the large response functions the dynamical differences between the
relativistic and nonrelativistic DWIA calculations result in differences in size of on
the order of 5 to 10 percent, with the longitudinal response function Ry, showing
an enhanced effect of 15 to 20 percent. This apparent relativistic suppression of
R relative to Rr is especially interesting in view of an analogous suppression
which has been observed in inclusive electron scattering. For the smaller response
functions the dynamical effects of relativity are on the order of 5 to 10 percent with
the exceptions of R}, R!, and R‘I‘T where the effects vary from 20 to 35 percent,
and R} where the effect is 75 percent. Of course, small response functions are more
likely to be very sensitive to variations in the details of computational models
since they are small because of the cancellation of leading order contributions
which dominate the large response functions. Anything which perturbs these
cancellations can result in large changes in these small response functions. Thus,

it should be noted that some of the small response functions such as R} and
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large polarization response functions. This entails only in-plane measurements,

the ability to flip the electron helicity, and a final ejectile spin determination.

The flexibility provided by final state polarization measurements in the
(€, ¢'F) reaction is considerable. In our study, every variation we have considered
produces distinctive implications for some subset of the response functions. As in
the case of medium and off-shell current operator effects, there is every reason
to expect this trend to continue as additional realistic physical processes are
. explored. For example, realistic nuclear structure implications, exchange currents,
and further relativistic effects remain to be explored. Also, the four-momentum
transfer behavior of the response functions needs to be explored, especially as a
function of differing dynamical models. The results of the present study suggest
that such investigations will prove interesting. It is also clear from this initial
study that potential advantages to be gained by measuring these new response
functions merit an investment in studies of the feasibility of separating some or
all of thése response functions from the cross section and in efforts to develop any

new experimental techniques which may be necessary to achieve this goal.
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= [ a&' (WP ) - W (i)

line

= [(Rir + REpSa) cos p+ (RizS: + RizS:) sin ]

= [ a5 (W (5R) + W (35)]

line

%[(RLT- + R}piSa) sin B+ (R},rfsr + wa"s‘) cos ]

=i [ 4B’ W (s5) - W ()]

line

2 (B + Rips) =i [ aB' 7 () - W (&)

line

These definitions yield f-independent response functions consistent with the

expression for the cross section (2.1).

The relationship between these “new”

response functions and the “old” ones can be written as

R;

where no summation of indices is implied. The coefficients C';- are given by

CL
Cr
Crr
Crr
Crr

{
CTT'

= CE
=Cp =
=Crr
=Cir

_ CET:

=C;*Tf

_ci(r
- CJ (RJ)old (A5)
1
1
Chy = Chp = —1
-1, Cip = Cir =1 4
» VLT LT =
= 1, C,LT' = C‘tLTr = -1
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The most general Lorentz four-vector is constructed by combining the
complete set of independent Dirac v-space tensors (1, s, v*, v*7s5, o**)
with 2 corresponding set of momentum-space tensors constructed from

two independent momenta p* and p'*, and the Levi-Civita tensor density
e*" _ Since the v-space tensors are of rank two or lower, the momentum-
. space tensors needed are at most of rank three. Twenty four four-vectors
are obtained, half of which do not transform properly under parity.
The remaining set of twelve independent four-vectors, each of which
is rnultiplied by an arbitrary scalar function of the four-momenta, and

forming the general form of the current operator, are: p#, p™*, 4, §'p'%,
}5}7“, #’PF, ﬁp,“s ] E"UW’YVP:,PM o.;wp:” or.l"’py, pl!‘oaﬂ (Papfg - P:, Pﬂ) and

H oOX 1 >

30



(=)

ol

Table Captions

Properties of Response Functions

Figure Captions

Coordinate system used in discribing the (€, ¢’ N ) reaction.
Response functions for the ejection of a Ty = 135 MeV proton from the
1p, /2 shell of 160. The response functions are shown for fixed momentum

transfer |§'| = 2.641 fm~! as a function of the magnitude of the recoil
momentum. The solid and dashed lines represent the relativistic and
nonrelativistic DWIA calculations, while the dotted line represents the
relativistic PWIA and the dot-dashed line represents the relativistic “on-
shell” calculation, as described in the text.

Same as Fig. 2.

Same as Fig. 2.

The hatched region represents the physically available values of momen-

tum transfer and recoil momentum for the (¢, ¢'N) reaction. Paral-
lel/Antiparallel kinematics coorespond to the borders of this region, while
the kinematics used in Figs. 2-4 is represented by the dashed line.
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